VENTURE CAPITAL DRIVEN BY RESEARCH, ARTIFICIAL INTELLIGENCE AND DECISION THEORY

Subscribe to our mailing list

* indicates required

Traditionally speaking, venture capitalists make investment decisions using "rules of thumb" also known as called heuristics. It is when you make decisions based on "past experience" and not "data." But today, there's more data about startups than ever. In an industry driven by data and analytics, it only makes sense to have a rational approach in investing using data, modeling, artificial intelligence and decision theory.

We've evaluated over 1 million deals and built artificial intelligence in decision theory to support investment decisions in venture capital.

Read more here...

techcrunch-logo.jpg VatorNews PE Hub VentureBeat

Our investment strategy and models are built on three tenets: bias-free selection, calculated deployment, and risk concentration. 

1. Cognitive biases are toxic when it comes to making investment decisions. That's why we evaluate startups for their merits in terms of technology and business and avoid biases.

2. Instead of deploying capital arbitrarily from deal to deal as it's been done traditionally, we perform complex stochastic calculations to determine check sizes, re-up levels and dry powder.

3. Risk concentration is key in venture capital. Many managers deploy capital to way too many companies particularly in the beginning which leaves very little room for mistakes and caps the upsize. This is why the term "spray and pray", "chasing homeruns" or "seeking unicorns" are commonly heard in discussions regarding fund returns.